Lab Manual for CSM3114 - Framework-Based Mobile
Application Development

Prepared by Mohamad Nor Hassan*

October 2024

*Universiti Malaysia Terengganu

CSM3114 - Lab Week 2

The Flutter framework let the students to develop cross-platform mobile applications which
can run on Android or iOS platforms.

This lab session will introduce to the student on the development of basic mobile applications
solely focusing on the Flutter and Dart fundamentals that emphasise on core Flutter and dart
syntax when developing the solutions.

The learning outcomes of this lab session are:

1. Exploring the core Flutter and Dart syntax.

2. Write a Flutter and Dart syntax.

3. Applying the Flutter widgets when build the mobile apps.

4. Combining the widgets when develop the mobile app.

CSM3114 - Lab Week 2

1 Creating a simple quiz application

1.1 Creating a New Application
1. Go to the command prompt.
2. Go to your Flutter workspace. For example, D:\ FlutterDev\projects.
BEX Command Prompt - flutter doctor -v - flutter doctor -v

D:\>cd FlutterDev

D:\FlutterDev>cd projects

D:\FlutterDev\projects>

3. Create a new Flutter project and rename it as quiz_app [Note: Use command flutter create

quiz_app).
4. Go to your Windows explorer and check quiz_app’s folder created.

> FlutterDev » projects »

~
Name

first_app
quiz_app

1.2 Adding a Layout Widget for Quiz app
1. Open the main.dart file via Visual Studio Code.
2. The next tasks are to fulfill the following requirements:

(a) Adding Scaffold widget to the UL

(b) Inside the Scaffold widget, add the AppBar widget with properties title as "My Quiz
App’.

(¢) Add quiz questions and followed by the three (3) button that representing the an-

swers. [Note: In order to group the question and answers in one single UI, you must

create the Column widget - group a widgets together].

CSM3114 - Lab Week 2

(d) Inside the Column widget, add Text widget and three (3) FElevatedButton widgets.
(e) The sample of coding is shown below.

ib > @ maindart > ...
1 import 'package:flutter/material.dart’;

2

3 void main() {

4 runfpp(const MyApp());

5 %

6

7 class MyApp extends StatelessWidget {

8 const MyApp({super.key});

9

10 // This widget is the root of your application.

11 @override

12 Widget build(BuildContext context) {

13 return MaterialApp(

14 home: Scatfold(

15 appBar: AppBar(

16 title: Text('My Quiz App’),

17), // AppBar '

18 body: const Column(

19 children: [

20 Text('The questions'),

21 ElevatedButton{onPressed: null, child: Text('Answer 1')),
22 ElevatedButton{onPressed: null, child: Text(Answer 2')),
23 ElevatedButton{onPressed: null, child: Text(Answer 3')),
24 1,

25), // Column

26 Y, // Scaffold

27 y; // MaterialApp

28)

29)

10:07 L]

My Quiz App

The questions

Answer 1

Answer 2

Answer 3

3. Open your Android Studio and Android Virtual Device (AVD).

CSM3114 - Lab Week 2

4. Start up the Android emulator.
5. Go to Visual Studio Code, go to Run and click Run Without Debugging.

6. Your will get the above output.

1.3 Exercise: Replace the ElevatedButton widget with OutlineBut-

ton widget

1. Based on coding part 1.2, modify the source code by replacing the first existing button
with QutlinedButton widget.

2. Attached your source code and the output.

3. Once you attach the source code, change it to ElevatedButton widget again.

CSM3114 - Lab Week 2

2

2.1

1.

The Flutter Official Documentation

Finding the Flutter Official Documentation

Go to Flutter official website.
Go to the Docs.

Show the steps by steps how you want to find the details implementation of Flevated Button
widget.

You are required to attach a print screen the snapshot of the FElevatedButton widget

information.

Exploring Text Widget

. Go to Flutter official documentation.

. Modify the existing source code you wrote in part 1.2 by changing the Text widget style

that display 'The questions’ as bold.

Attached the source code.

. Finally, attach a print screen the snapshot of the output.

CSM3114 - Lab Week 2

3

3.1

1.

2.

3.2

Passing Callback function

Creating function and attach to button

Expand the codes written in part 1.2 by creating new function known as void answerQues-

tion().

7 class MyApp extends Statelesshidget {

8 const MyApp({super.key});

9

10 void answerQuestion() {

11 print('Answer chosen..!");

- }.. ;

13

14 // This widget is the root of your application.
15 @override

16 Widget build(BuildContext context) {

17 return MaterialApp(

18 home: Scaffold(

19 appBar: AppBar(

20 title: const Text('My Quiz App'),
21), // AppBar

22 body: Column(

Then, attach the function to the three (3) ElevatedButton widget.

22 body: Column(

23 children: [

24 Text(The questions’),

25 ElevatedButton(onPressed: answerQuestion, child: Text('Answer 1')
26 ElevatedButton(onPressed: answerQuestion, child: t?5££L5ﬂ§ﬂ§£«%,i
27 ElevatedButton(onPressed: answerQuestion, child: tﬁﬁ&ﬁ;ﬁﬂiﬁéﬁ;@;ﬁj’
28 1, “

290), // Column

30 Y, // Scaffold

31); // MaterialApp

32 }

33}

Run the apps via Visual Studio code.

Verify the output from the debug console and attach the output in your lab report.

Using anonymous function

. Modify the code from part 3.1, by assigning the anonymous function to second (2nd) and

third (3rd) Elevated Button widget.

Run your app. Pressed second (2nd) button. Captured the output from Debug Console.

CSM3114 - Lab Week 2

3.

4.

3.3

Subsequently, pressed first (1st) button. Captured the output from Debug Console.

The following code shows the implementation of anonymous function.

22 body: Column(

23 children: [

24 Text(The questions’),

25 ElevatedButton({onPressed: answerQuestion, child: I?ﬁ&glﬁﬂfﬁifméll)’
26 ElevatedButton(

27 onPressed: () => EEEQ&('Answer 2 chosen...!"),
28 child: 1553£;5323§£Ng;2), // ElevatedButton
29 ElevatedButton(

3@ onPressed: () => Er}aﬁ('Answer 3 chosen...!"),
31 child: 1?53$L%Q§ﬂéfmiLi)’ // ElevatedButton
- 1, . . .

33), // Column

34 Y, // Scaffold

35); // MaterialApp

36 1

37 7

2Q

Updating Widget Data using Stateful Widget

From the main.dart in part 3.1, rename the stateless widget to stateful widget.

Create a second class known as MyAppState by inherit the State’s class. Implement the

details logic for the class.

Inside the function void answerQuestion(), add the method or function known as set-

State().
Define a list of questions.

Assign a answerQuestion function to each of the FElevatedButton widget.

1> @ maindart > & MyAppState

1 import 'package:flutter/material.dart’;
2

3 void main() {

4 runApp(const MyApp());

5 %

6

7 class MyApp extends StatefulWidget {

8 @override

g const Mylpp({super.key});
10 State<StatefullWidget> EESEEEEE?E?C) L
no /1,T0PQ; implement createState
12 return MyAppState(); |
13 mANV;;;éANJHiFC;Er;ﬂ_&;zﬂf:ﬂ ;
14 WNl
15}

CSM3114 - Lab Week 2

6. Run the apps. Test the app by clicking to button Answer 1 and Answer 2. Explain the

findings

38
39
4@
41
42
43
44
45
46
47
48
49
5@
51
52
53
54
55
56
57

3.4 Exercise

17 class MyAppState extends State<MyApp> {

18 var questionIndex = ©;

19

20 void answerQuestion() {

21 J/print("Answer chosen!');

22 setState(() {

23 questionIndex = questionIndex + 1;
24 15

25

26 Eﬁiﬂy(questionlndex);

27 1

28

29 // This widget is the root of your application.
30 @override

31 Widget build(BuildContext context) {
32 //Define a lists

33 var gquestions = [

34 "What \'s your favourite colour?',
35 "What \'s your favourite animal?',
36 I;

37

return MaterialApp(
home: Scaffold(
appBar: AppBar(
title: const Text('My Quiz App'),
), // AppBar
body: Column(
children: [

Text(
questions[questionIndex],
//questions.elementAt (@),

), // or questions[@]; // Text

ElevatedButton(onPressed: answerQuestion, child:
ElevatedButton(onPressed: answerQuestion, child:
ElevatedButton(onPressed: answerQuestion, child:

1,
Y, // Column
Y, // Scaffold
Y; // MaterialApp

e

Text(Answer 1°)),
Text(] 200

1. Develop the simple UI for application used to choose two(2) types of discount.

